US009148669B2

a2 United States Patent

Huang et al.

US 9,148,669 B2
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

HIGH PERFORMANCE AVC ENCODER ON A
MULTI-CORE PLATFORM

Inventors: Jonathan Huang, Cupertino, CA (US);
Tsaifa Yu, Milpitas, CA (US)

Assignee: Sony Corporation, Tokyo (IP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 935 days.

Appl. No.: 13/045,436

Filed: Mar. 10,2011

Prior Publication Data

US 2012/0230391 Al Sep. 13, 2012

Int. CL.
HO4N 7/12
HO4N 19/436
HO4N 19/503
HO4N 19/177
U.S. CL
CPC HO4N 19/436 (2014.11); HO4N 19/177
(2014.11); HO4N 19/503 (2014.11)
Field of Classification Search
CPC .. HO4N 19/177; HO4N 19/436; HO4N 19/503
USPC 375/240.02, 240.03; 719/149
See application file for complete search history.

(2006.01)
(2014.01)
(2014.01)
(2014.01)

(56) References Cited
U.S. PATENT DOCUMENTS

8,341,611 B2* 12/2012 Munshietal. 717/149

2001/0014123 Al* 82001 Strasmanetal. ... 375/240.13
2008/0137736 Al* 6/2008 Richardsonetal.
2011/0305273 Al* 12/2011 Heetal. ..o 375/240.02

* cited by examiner

Primary Examiner — Jessica M Prince
(74) Attorney, Agent, or Firm — Haverstock & Owens LLP

(57) ABSTRACT

A method and system for encoding a digital video signal
using a plurality of parallel processors. A digital picture is
received that is composed of one or more GOPs. The CPU
then determines the number of GOPs that need to be encoded
and divides them into groups. The number of GOPs in a group
may equal the number of parallel processors in the multi-core
platform available to encode. The CPU transfers in a single
batch to the multi-core platform, a frame of equal rank from
each GOP contained in the first group. The multi-core plat-
form encodes the frames in parallel, rearranges the encoded
byte stream chunk into normal display order sequence and
stores the encoded byte stream. The process may repeat until
all the GOPs in the first group have been encoded. Upon
completion the multi-core platform outputs the encoded byte
stream in normal display order sequence.

12 Claims, 3 Drawing Sheets

Video Device 170

Central Processing

Unit 110 Host Memory 120

A A

Bus 160

N

A

P Multi-Core
! Platform 130
P
2 Multi-Core Decoder 180
Platform
Memory 140 4
®
®
®
Pn \r\
150
h
A Y >

US 9,148,669 B2

Sheet 1 of 3

Sep. 29, 2015

U.S. Patent

D Y //w/ 7y 7 W
091 sng
]
/) \ 4 \ 4
N A
N\ d 0C| Aows JsoH 0Ll 1UN
BuIssaa0.d [enua)
o
®
L
A Or) Alowspy v
wiojeld
8I00-NINN
08| J8p0dsQ 2d 0/ 821n8(] 08pIA
0¢| wJiopeld »
2I0O-NINN
001
l Ol

US 9,148,669 B2

Sheet 2 of 3

Sep. 29, 2015

U.S. Patent

[S4

Jaguinp dnolig

JusWwaIdU|

A

ON

0S¢
suey

A

aWel on
JusLwaou|

74
¢papoouz
dnoJ9 u

sowel ||y

80UBIJRY (907

SHUNYY Weengs a)ig
pspoou3 sbuelesy

74
sowelq

b

(3 |
sjuawinbiy Gee
saluel4 R
Buipooug oo >
ajealdng p <
[r44
{74 dOW
" 0} syuswnbry
g a|dyin
juawnbiy afuig (AN
UIIM puellWwo) MH_>> puewwo)
Bupooug anss| Upoou3 enss|

(4
(ONBA SWeS
AU} 10 SjuBWINBIY UM pUBLILICY
Buipooug ue saeH dnoloy e uiym
Sd0D 8y ul yuey
[enb3 Jo sawe.
ayioq

S3A

S3A

e
sdno.o

UILIM SOl
0} yuey ubissy

0%
popooug
sdnoig
IV

(514
weens
a)Ag papoous
ndino

60C
sdnoig

0)u| $09 3P

(7
| 99jdwo)
S3A $53001d
¢ Old
I0¢
pepodu3g 8q 0} S40D

4O JaquunN sulieleq

[Si4
08pIA [eyfig
TN

U.S. Patent Sep. 29, 2015 Sheet 3 of 3 US 9,148,669 B2

GOPw, x

FIG. 3

Groupx
A
000

GOP1, x

GOPn.1

f.

o000
/
N

fr: -

Group1
A
GOP31

GOP2;

GOP+ 1
N
78

fr:1

US 9,148,669 B2

1
HIGH PERFORMANCE AVC ENCODER ON A
MULTI-CORE PLATFORM

TECHNICAL FIELD

The present disclosure relates to the field of video com-
pression. More specifically, the present disclosure relates to
methods and systems for performing video compression uti-
lizing parallel processors.

BACKGROUND

In order to efficiently store and transmit digital video sig-
nals, it is often desired to “compress™ the signals. H.264
Advanced Video Coding (AVC) is a video compression stan-
dard that achieves higher compression efficiency than most
signal compression standards. The AVC standard provides
good video quality at bitrates that are substantially lower than
previous standards, such as MPEG-2, H.263, or MPEG-4 Part
2, without being impractical to implement. The AVC standard
is also flexible enough to be applied to a wide variety of
applications and work well on a very wide variety of networks
and systems.

The coding efficiency gains of advanced video standards
such as AVC come at the price of increased computational
requirements. The demand for computing power also
increases with the shift towards HD resolutions. As a result,
current high-performance uniprocessor computer architec-
tures are not capable of providing the performance required
for real-time processing. One way to speed up the video
encoding processes is to use a multi-core architecture. More-
over, another powerful solution is to exploit parallelism. AVC
may be parallelized either by atask-level or data-level decom-
position.

In order to exploit parallel processing power in video com-
pression applications, conventional methods involve splitting
a picture in a video sequence into “slices.” Some video com-
pression applications require a single-slice approach (one
slice per picture). With the single-slice approach, there are
many dependency issues in the syntax and semantics around
the block boundary, especially in the AVC specification.

One method of parallel processing video compression on a
multi-core system with the single-slice approach is to sepa-
rate a picture horizontally into a top half and a bottom half,
further separating the picture into Macroblocks (MBs). One
thread in the processor processes the top half of the picture
and another thread processes the bottom half. Both threads
process the same picture. The bottom thread ignores depen-
dency around the boundary and also handles conformance of
syntax around the boundary. When the bottom thread pro-
cesses the first lines in an MB of the picture, it selects an MB
mode that is independent of mode used for its upper MB.
However, this methodology may achieve lower efficiency of
compression than the standard single-slice raster scan
approach.

A multiple-slice approach has been proposed. However,
multi-slice methods may suffer from many problems. For
example, it may be difficult or impossible to validate the
correctness of parallel-processing methodology incorporat-
ing multi-slices. In addition, the video quality decreases at the
boundaries of slices. Video compression using horizontal
multi-slice encoding may suffer workload imbalance if the
complexity of video contents are different in different slices.
Moreover, the result of individual slices of horizontal multi-
slice encoding needs to be concatenated to form a single
result. This is additional work that does not exist in single-
slice encoding.

10

25

35

40

45

55

2

All of the processes discussed above divide a frame into
slices for encoding. If a system could pass an entire frame,
rather than a slice, to a multi-core encoder, it would greatly
reduce the communication load between the central processor
and encoder. Additionally, the communication load would be
further reduced if the encoding process occurred in a single-
command multiple-data fashion. Hence, there remains a need
for an efficient implementation and scalable methodology for
processing, in parallel, groups of pictures (GOPs) at the frame
level where each frame is an encoding unit.

SUMMARY

In at least one embodiment, a method of generating a
compressed video signal is performed in an encoding system
comprising a central processing unit (CPU), a host memory,
and a multi-core platform comprising a plurality of parallel
processor units. An exemplary the method comprises receiv-
ing an input digital video signal comprising a plurality of
GOPs each comprising one or more frames; determining, by
the CPU, a number of GOPs to encode; dividing the GOPs to
be encoded into one or more groups based on a number of the
parallel processor units; assigning ranks to the frames in the
GOPs; comparing arguments of an encoding command for
frames of equal rank within a group of the one or more
groups; if the arguments are different from one another, trans-
ferring the arguments and the frames of equal rank to the
multi-core platform; encoding the transferred frames in par-
allel by the parallel processor units, creating encoded byte
stream chunks; re-arranging the encoded byte stream chunks
in an output buffer in display order sequence to create an
encoded byte stream; and outputting the encoded byte stream.

In some embodiments, the exemplary methods may be
implemented by instructions stored on a non-transitory com-
puter-readable storage medium which, when executed in an
encoding system comprising a central processing unit (CPU),
a host memory, and a multi-core platform comprising a plu-
rality of parallel processor units, cause the encoding system to
perform the exemplary methods.

Further described herein are systems for encoding a digital
video signal, comprising a host memory, configured to
receive the digital video signal, wherein the digital video
signal comprises a plurality of GOPs and the GOPs comprise
one or more frames; a central processing unit, configured to:
divide the GOPs to be encoded into one or more groups,
compare arguments of an encoding command, for frames of
equal rank within a group of the one or more groups, if the
compared arguments have the same value, transfer, a single
argument and at least one of the frames of equal rank within
the group, and if the compared arguments have different
values, transfer, the arguments and the frames of equal rank
within the group; and a multi-core platform comprising: a
plurality of parallel processor units configured to: receive,
from the central processing unit, frames of equal rank from
the group and at least one argument, if only a single argument
is received, provide the single argument to each of the of
parallel processor units, encode the frames in parallel, creat-
ing encoded byte stream chunks, arrange the encoded byte
stream chunks in display order sequence to create an encoded
byte stream, and output the encoded byte stream; and a multi-
core platform memory, configured to store frames transferred
from the central processing unit, and further configured to
store encoded byte stream chunks.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate exemplary
embodiments and together with the description, serve to
explain the principles of the claimed inventions.

US 9,148,669 B2

3

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the inven-
tions, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate exemplary
embodiments and, together with the description, serve to
explain the principles of the disclosure. In the drawings:

FIG. 1is a block diagram of an exemplary AVC multi-core
computer system,

FIG. 2 is a flow chart of an exemplary method for encoding
digital video data utilizing parallel processors, consistent
with the present disclosure; and

FIG. 3 illustrates video data as represented in groups,
groups of pictures, and frames.

DESCRIPTION OF THE EMBODIMENTS

The following description refers to the accompanying
drawings. Wherever possible, the same reference numbers
will be used throughout the drawings to refer to the same or
similar parts. While several exemplary embodiments and fea-
tures of the inventions are described herein, modifications,
adaptations and other implementations are possible without
departing from the spirit and scope of the inventions. For
example, substitutions, additions or modifications may be
made to the components illustrated in the drawings, and the
exemplary methods described herein may be modified by
substituting, reordering, or adding steps to the disclosed
methods. Accordingly, the following detailed description in
non-limiting and the proper scope of the inventions is defined
by the appended claims.

As used herein, the term “digital video signal” includes a
digital signal composed of one or more groups of pictures
(GOPs), the GOPs being composed of one or more frames or
pictures.

In the present disclosure, methods and systems for per-
forming video compression using parallel processors are dis-
closed. FIG. 1 is a block diagram of an exemplary embodi-
ment of an AVC encoding system for implementing methods
described herein. As shown in exemplary FIG. 1, the AVC
encoding system 100 comprises a central processing unit
(CPU) 110, a host memory 120, and the multi-core platform
(MCP)130. In some embodiments, system 100 may be opera-
tively coupled (such as communicatively coupled using opti-
cal, electrical, or wireless transmission) to a video device 170
and a decoder 180. Although the exemplary system of FIG. 1
is shown with a single CPU, the principles of the claimed
invention may be implemented on systems with multiple
CPUs. The AVC encoding system 100 may be operated in
association with, for example, a camera, a computer system,
or any other device capable of receiving, capturing, transmit-
ting, or rendering a video signal.

Video device 170, may be the output circuit of a digital
camera or other device whose output is a digitized video
signal. The video device 170 may be operatively coupled to
CPU 110, host memory 120, MCP 130, and the decoder 180
via bus 160.

Instructions executed by CPU 110 may, for example, be
pre-loaded into the processor or may be stored in separate
computer-readable host memory 120 or other separate stor-
age device (not shown), such as a random access memory
(RAM), a read-only memory (ROM), a hard disk, an optical
disk, a magnetic medium, a flash memory, other permanent

10

15

20

25

30

35

40

45

50

55

60

65

4

memory, other volatile memory, or any other tangible mecha-
nism capable of providing instructions to the processor.

As depicted in FIG. 1, CPU 110 may be operatively
coupled to the host memory 120, the MCP 130, the video
device 170, and the decoder 180. For example, in some
embodiments the operative coupling may be via a system bus
160. CPU 110 may be configured to execute instructions that
regulate one or more ofthese components. For example, CPU
110 may be configured to divide a digital video signal into
GOPs. As depicted in FIG. 1, CPU 110 is all or part of a CPU.
Additionally, in some embodiments, CPU 110 may be one or
more integrated circuits, microchips, microcontrollers,
microprocessors, embedded processor, graphics processing
unit (GPU), digital signal processors (DSP), field-program-
mable gate array (FPGA), or other circuit suitable for execut-
ing instructions or performing logic operations, or some com-
bination thereof.

Hostmemory 120 may be volatile (e.g., SRAM, DRAM, or
other semiconductor memory) or non-volatile (e.g., harddisk,
RAN optical disk, flash drive). Host memory 120 is opera-
tively coupled to the CPU 110, the MCP 130, the video device
170, and the decoder 180. Additionally, in some embodiments
some of host memory 120 may be mapped into an effective
address space of an MCP Memory 140, making the same
memory visible to both the CPU 110 and the MCP 130,
reducing the need to copy from one memory to another for the
data to be used by both.

MCP 130 is a conventional multi-core platform processing
device comprising multiple processing units (or cores), gen-
erally in a single physical package such as an integrated die.
As with single-processor devices, cores in multi-core devices
may implement architectures like superscalar, VLIW, vector
processing, SIMD, or multithreading. The various cores on a
multicore platform may share on- or off-chip cache.

As shown in FIG. 1, MCP 130 includes a plurality of
processor cores 150, labeled P, to P, and MCP memory 140.
The processing cores 150 may, for example, include a plural-
ity of integrated circuits, microchips, microcontrollers,
microprocessors, embedded processors, all or part of CPUs,
graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), or other
circuits suitable for executing instructions or performing
logic operations, or some combination thereof.

Each of the plurality of processor cores 150 may have a
parallel data cache, or shared MCP memory 140, that is
shared by all the processors within the MCP 130. MCP
memory 140 is a low-latency memory and may be located
near each processor core to further reduce latency. MCP
memory 140 allows the processor cores 150 to share data
without the need to pass data outside the chip to the generally
much slower host memory 120. Use of the embedded MCP
memory 140 in the MCP 130 reduces the number of external
memory accesses. MCP memory 140 may be part of the same
package as the MCP 130. Additionally, in some embodiments
(not pictured), the MCP memory 140 can simply be a subset
of host memory 120. In some embodiments (not pictured),
MCP memory 140 may be a subset of some other memory
that is connected to the plurality of processor cores 150.

In some devices, each of the processor cores 150 may have
one or more local caches (not pictured), such as the [.1/[.2
caches currently available on devices of compute capability
2.0. Local cache may be used, for example, to service opera-
tions such as load, store, and texture, and can be used to
facilitate high-speed data sharing across the MCP 130. In
some devices, on-chip memory may be configurable, such
that on-chip memory may be allocated between local cache
(not pictured) and shared MCP memory 140.

US 9,148,669 B2

5

MCP 130 may be any available multi-processor platform.
Exemplary GPU-based multi-core platforms include the
INTEL Knight Ferry, NVIDIA GeForce GTX 480, and the
CPU based multicore platform include INTEL 17 (4 core),
INTEL Sandy Bridge (6 core), INTEL Gulftown (6 core), and
AMD Phenom platforms.

In at least one embodiment, the encoded digital video
signal is provided to a decoder 180, for decoding. Decoder
180 may be operatively coupled to a device (not pictured) for
display of the decoded video signal. Additionally, in some
embodiments the encoded digital video signal may be pro-
vided to communication channels (not pictured) to be trans-
mitted, or to storages to be recorded (not pictured).

The methods described herein are scalable. Therefore, use
of MCPs with more core processors and/or more on-chip
memory may be used to obtain better performance. More-
over, the described methods may be operable in many difter-
ent working environments ranging from low-end applica-
tions, such as handheld devices and laptops, to high-end
applications such as GPU servers.

Method for Encoding Digital Data

FIG. 2 shows an exemplary method for encoding digital
video data consistent with the present disclosure. In step 205,
a digital video signal is received. In some embodiments, the
host memory may be configured as an input buffer for the
digital video signal as it is received. For example, the host
memory may buffer a streaming digital video signal. Further,
host memory may be configured to store the entire digital
video signal before encoding occurs.

The digital video signal is composed a stream of frames
divided into groups of pictures (GOPs). In step 207, the
number of GOPs to be encoded is determined. In step 209 the
GOPs are divided into one or more groups. FIG. 3 illustrates
the case where the digital video signal is divided into X
number of groups. The number of GOPs in a group, N, may be
based on the number of parallel processors in the MCP that
are available to perform encoding. The number of parallel
processors available to perform encoding may be determined
apriorior dynamically. Steps 207 and 209 may be performed,
for example, by software operating on the CPU or by hard-
ware.

In step 211, frames within a GOP are associated with, or
assigned, a rank r, of 1 to S. FIG. 3 is illustrative of the case
where rank is assigned consecutively and sequentially, for
example, in GOP, , frames f,_, to f,_; are depicted. In alter-
nate embodiments, rank may be assigned randomly to frames
within a GOP. When rank is assigned randomly to frames
within a GOP, frames within other GOPs may also contain the
same random rank assignment, such that frames of equal rank
among all of the GOPs maintain the same position relative to
each other. For example, if the frames of GOP,; were
assigned ranks {5, fi, f, . . ., then the other GOPs must have
similar ranks assigned to their frames. Step 211 may be per-
formed, for example, by software operating on the CPU or by
hardware.

The digital video signal is encoded by group. In some
embodiments, the groups are processed sequentially. For
example, Group, is processed first, followed by Group,, and
so on until all groups are processed. However, in alternate
embodiments the groups may be processed in a non-sequen-
tial order, until all groups are processed.

In step 215, arguments of an encoding command, for
frames of equal rank within a group are compared. An argu-
ment may be, for example, frame width, frame height, frame
row data, pixel value(s), any other variable related to the
frame, or any other variable related to encoding the frame. If
the arguments of the encoding command for the frames of

20

30

40

45

55

6

equal rank do not possess the same value, an encoding com-
mand issues with multiple arguments to the MCP (step 220).
For example, if pixel value is the argument being compared,
and frames of equal rank within the various GOPs contained
in the group have different pixel values, then all of the argu-
ments of the encoding command and all the frames of equal
rank within the various GOPs contained in the group are
transferred to the MCP. An encoding command containing
multiple arguments is then issued and frames for encoding are
transferred.

In some embodiments, the transfer of frames of equal rank
within the group is accomplished in a single batch by, for
example, a single command from the CPU to the MCP. For
example, if it is determined in step 215 that all of the frames
of'equal rank with the GOPs in a group have the same encod-
ing argument value, the CPU may transfer a single argument
to the MCP (step 225). If, for example, frame width is the
compared argument and all of the frames of equal rank within
the GOPs contained in the group have the same frame width,
only a single frame width may be transterred to the MCP
along with the frames of equal rank. The transferred argu-
ment, in this example frame width, may then be duplicated for
all the frames of equal rank transferred to the MCP (step 230).

Moreover, in some cases (e.g., the compared frames are
identical), only a single frame is transferred to the MCP for
encoding. The transferred single frame can be any one of the
frames of equal rank compared, because they all have the
same value. For example, if all of the frames of r=1 within
Group, have the same value, only one frame of r=1 is trans-
ferred to the MCP. Additionally, as illustrated in step 230, the
single frame may be duplicated. The number of times the
frame is duplicated may be determined by the multi-core
platform, host Application, or the user. Collectively, steps
215, 225 and 230 may be referred to as a “broadcast” style
communication.

When the frames of equal rank are transferred to the MCP,
they may be placed in MCP memory. In step 235, the proces-
sors within the MCP encode frames of equal rank contained in
MCP memory and output encoded byte stream chunks (en-
coded frames) and local reference frames. The local reference
frames may be used as a reference by the MCP to encode
other frames within the group being processed. In some
embodiments, the encoded byte stream chunks may be out-
putted back to the MCP memory, the host memory, or the
MCP memory and the host memory. In some embodiments,
the local reference frames may be outputted back to the MCP
memory, the host memory, or the MCP memory and the host
memory.

In some embodiments the frames are encoded in parallel,
such that every available processing core within the multi-
core platform encodes a single frame. Additionally, in some
embodiments, encoding may be accomplished using fewer
than the number of cores in the MCP. Additionally, in some
embodiments encoding may be accomplished using more
than the number of cores in the MCP, because the MCP may
be multi-threaded (e.g., the number cores may be increased
by virtualization).

In step 240, the encoded byte stream chunks are rearranged
into normal display order sequence to create a portion of the
encoded byte stream. Because the encoding process may be
done in parallel on individual frames from different GOPs,
the encoded output from one or more cores may not be in the
order of normal display order sequence. Therefore, in orderto
provide a normal display order sequence, the encoded byte
stream chunks are placed in the correct display order.

In step 245, it is determined whether all the frames within
the group being processed have been encoded. In some

US 9,148,669 B2

7

embodiments it is the CPU that makes this determination. In
other embodiments (not pictured), it is the MCP that makes
this determination.

If all of the frames in a group have not been encoded (step
245), the frame rank is incremented (250) and the method
repeats steps 215-240 for the new frame rank. For example,
after frames of r=1 are processed, r would be incremented to
2. The frame encoding process would start again at step 215,
thereby beginning processing of frames of r=2 within the
GOPs in the group being processed.

The MCP memory may act as an output buffer storing the
re-arranged encoded byte stream chunks. Additionally, in
some embodiments the host memory may act as an output
buffer storing the re-arranged byte stream chunks. In some
embodiments, the Host (CPU) does the re-arrangement, and
the MCP performs steps 220, 225, 230, and 235. In other
embodiments (not pictured), the MCP or some other proces-
sor may perform the rearrangement.

If all of the frames within the group have been encoded
(step 245), the encoded byte stream is outputted from MCP
memory (step 255). The outputted encoded byte stream may
be, for example, sent to a decoder or display device, sent to
communication channels for transmission, or sent to storage
for recording. In some embodiments (not pictured), the out-
put of the rearranged byte stream may begin before all frames
within the group have been encoded. This may occur so long
as the unprocessed frames are encoded and placed in the byte
stream before it is their turn to be outputted. In some embodi-
ments (not pictured), the encoded byte stream is output only
after all groups have been encoded. In such an embodiment, a
complete encoded digital video signal is outputted rather than
a single group of the digital video signal.

In step 260, it is determined whether all the groups which
comprise the digital video signal have been encoded. In some
embodiments, it is the CPU that makes this determination. In
other embodiments (not pictured), it is the MCP that makes
this determination. If all of the groups have not been pro-
cessed, in step 265 the group is incremented (e.g., from
Group, to Group,) and Group, is processed at step 215. When
all of the groups are processed, the encoding of the digital
video signal is complete (step 270).

Methods described herein may be implemented in software
on one or more computing systems. For example, such com-
ponents may comprise one or more software applications,
which may comprise one or more computer units including
storage devices containing computer-readable instructions
which, when executed by a processor, cause a computer to
perform steps of a method. Computer-readable instructions
may be stored on a tangible non-transitory computer-readable
medium, such as a flexible disk, a hard disk, a CD-ROM
(compact disk-read only memory), and MO (magneto-opti-
cal), a DVD-ROM (digital versatile disk-read only memory),
a DVD RAM (digital versatile disk-random access memory),
or a semiconductor memory. Alternatively, the methods may
be implemented in hardware components or combinations of
hardware and software such as, for example, ASICs, special
purpose computers, or general purpose computers.

GOP Multithreading Algorithm on INTEL’s Larrabee
MCP

In methods described herein, input video sequences may be
equally distributed within a MCP for parallel processing.
Equal distribution of frames of equal rank among the MCP
processor cores may reduce encoding times. Additionally, as
described above, in some embodiments a single command
from the CPU may result in multiple data being encoded in
the MCP. The single-command multiple-data approach may
reduce communication costs when compared against a

10

15

20

25

30

35

40

45

50

55

60

65

8

single-command single-data approach. As also described
above, in some embodiments, a single CPU command (host
Application side) may result in frames of equal rank within a
group being transferred to the MCP (co-processor side) in a
single batch and processed in parallel by the plurality of
processors internal to the MCP.

Some embodiments described herein operate in accor-
dance with SONY’s SFTCDC AVC Encoder Ver. 4.0 Speci-
fication (SFTCDC Specification). The SFTCDC Specifica-
tion describes the parameters and instructions used by the
AVC software encoder library APIs (Application Peripheral
Interface) to encode video bit-streams conforming to AVC
standard—ISO/IEC 14496-10. In some embodiments, the
GOP multithreading algorithm may be performed on a MCP,
such as INTEL’s Larrabee multi-core platform (L-MCP).
However, it will be understood by one of skill in the art that
MCPs by other manufacturers with similar features may also
be used. In an exemplary embodiment using an [.-MCP, the
L-MCP executes the encoding process through the API com-
mands of SFTCDC Specification. For example, a single com-
mand from a host application to the L-MCP may initiate the
encoding process. Additionally, API function calls and data
communication between the host application and the L.-MCP
may be implemented by XN APIs of L-MCP Native. These
XN APIs provide mechanisms for loading various thread pool
services, for example, L.-MCP Native executable, communi-
cation between the host and L-MCP, and data transfer
between the host and L-MCP.

In exemplary embodiments consistent with the present dis-
closure, several types of GOPs may be encoded using a GOP
multithreading algorithm. One type (type 1) of GOP occurs
when a GOP is bounded by two [-frames. A second type (type
2) of GOP occurs when the input frames are evenly distrib-
uted among the MCP. The relationship between the GOP
being encoded, frames, and the encoding cores varies depend-
ing on which type of GOP is being processed.

For example, suppose N is the number of cores in MCP
130, M is the number of input frames, and S is the number of
frames (GOP size) between two I-frames. The relationship
between the GOPs and the MCP core number is as follows:

MCP

GOP No. Frame No. Core No.

Type 1:
0 0,1...(S-1) 0
1 S,S+1...(28-1) 1
2 28,28+41...(35-1) 2
A-1 (A*N)S, A*N)S+1...(A*N+1)*S-1 A-1
where A = [M/(N * 8)]

Type 2:
0 0,N, 2N, 3N,... 0
1 I,N+1,2N+1,3N+1,... 1
2 2,N+1,2N+2,3N+2,... 2
3 3,N+3,2N+3,3N+3,... 3
N-1 (N-1),N+(N-1),2N+ (N-1), N-1

BN+ (N-1),...

There are two places in the SFTCDC Specification that
may be modified or extended to implement multi-core GOP
processing operations using the L.-MCP. First, a single-com-
mand multiple-data (SCMD) scheme may be implemented in
some API function calls using a savce command. SCMD is a
SIMD-like method to aggregate multiple data from difterent
GOPs in a single command from the host (i.e. CPU side) to

US 9,148,669 B2

9

the L-MCP (i.e., co-processor side). Second, the input digital
video frames, output byte stream, and local decoded frames
have to be re-arranged in order to support GOP style of
encoding.

In at least one embodiment, there is only one encoder
command (instance) on the host side, and multiple encoder
instances on the co-processor side. With this design, the host
side may still maintain simplified control flow due to only one
encoder instance. In contrast, the co-processor side has mul-
tiple encoder instances in run time, to enable the software to
match the nature of multi-core architecture. In addition, the
communication throughput between host and co-processor
side may increase due to aggregation of a large amount of data
from multiple GOPs and moving of the data in a single batch.

In some embodiments the commands may be implemented
in the computer language C, C++, or some combination
thereof. In some embodiments the host side starts the encod-
ing process with a “CAvcEncSample::iRun”, and an object,
LrbComHost, is constructed. In the LrbComHost constructor,
a multi-core platform binary code (context) is downloaded to
the L-MCP and the necessary communication buffers are
created through XNBuffer.

In some embodiments there are various savce API com-
mands that may be issued from the CPU side to the co-
processor side, for example, CAvcEncSample::Encode_
Open(), Encode_ Run(), Encode Close(),
InputThread()/InputHandling(), and OutputThread()/Out-
putHandling(). Depending on the nature of the savce API
commands, two kinds of communication style are imple-
mented. The first communication type is the “broadcast”
style, wherein the sender of “broadcast” style command sends
a command with a single data (e.g., argument, frame, com-
mand, etc.), and the receiver may then duplicate the single
data. The second communication type is the “vector” style,
wherein the sender of “vector” style command sends multiple
data with a single command, and the receiver receives mul-
tiple data with different values (e.g., steps 215 and 220 of F1G.
2).

In some embodiments the APIs of SFTCDC AVC Encoder
Specification include: savceGetFrameForlnput();
savceReadFrame(); savceFrameEncode(); savceGetLocal-
DecodeFrame(); Byte stream output; and WriteResults().
The above commands are explained in more detail below.

savceGetFrameForInput(). In some embodiments, this
command is important because the CPU and the L-MCP
sometimes may not use the same address space, in such cases
the host side and the L-MCP side need to have their own
frame buffers.

savceReadFrame(). This command may be used to get
multiple pictures in GOPs. The savceReadFrame command
may be extended to support reading multiple pictures from
one raw video input file.

savceFrameEncode(). The FrameEncode command may

be extended to support GOP parallel encoding.
C2LBUF_D16M is used for Y frame buffer.
C2LBUF_D0O4MBO is used for Cb frame buffer.

C2LBUF_D04MB2 is used for Cr frame buffer. The
FrameEncode command is a “vector” style command. Thus,
the L-MCP side receives multiple frames as the input of
multiple encoders in one single command.

savceGetLocalDecodeFrame(). Similar to the savce-
FrameEncode command, the savceGetLocalDecodedFrame
in OutputHandling() uses a similar style to get multiple local
decoded frames from multiple encoders in the L-MCP.

Byte stream output uses a “vector” style command but with
L2CBUF_DO08M buffer.

10

15

20

25

30

35

40

45

50

55

60

65

10

WriteResults() is modified to support re-arrange output
byte stream and local decoded frame. In addition to original
output “yuv” and “avc” files, one additional set of “yuv” and
“avc” files (Id.yuv and bs.avc) are created so that original
output “yuv” and “avc” files reflect the GOP encoding output
without re-arrangement, and the new “Id.yuv” and “bs.avc”
are the output after re-arrangement.

In some embodiments, increased processing speed may be
associated with an increase in the number of cores available
for encoding in the multi-core platform. The methodology
described herein can be implemented on any number of cores.
Moreover, the software design of the encoding methodology
allows for easy portability between different types of hard-
ware platforms.

For purposes of explanation only, certain aspects and
embodiments are described herein with reference to the com-
ponents illustrated in FIG. 1. The functionality of the illus-
trated components may overlap, however, and may be present
in a fewer or greater number of elements and components. For
example, all or part of the functionality of the illustrated
elements may co-exist or be distributed among several difter-
ent devices and/or at geographically-dispersed locations.
Moreover, embodiments, features, aspects and principles of
the presently-claimed inventions may be implemented in
various environments and are not limited to the illustrated
environments.

Further, the sequences of events described in FIG. 2 is
exemplary and not intended to be limiting. Thus, other
method steps may be used, and even with the methods
depicted in these figures, the particular order of events may
vary without departing from the scope of the present inven-
tions. Moreover, certain steps may not be present and addi-
tional steps may be implemented. Also, the processes
described herein are not inherently related to any particular
apparatus and may be implemented by any suitable combi-
nation of components.

Other embodiments of the inventions will be apparent to
those skilled in the art from consideration of the specification
and practice of the inventions disclosed herein. It is intended
that the specification and examples be considered as exem-
plary only, with a true scope and spirit of the inventions being
indicated by the following claims.

What is claimed is:

1. A method of generating a compressed video signal in an
encoding system comprising a central processing unit (CPU),
a host memory, and a multi-core platform comprising a plu-
rality of parallel processor units, the method comprising:

receiving an input digital video signal comprising a plural-

ity of GOPs each comprising one or more frames;
determining, by the CPU, a number of GOPs to encode;
dividing the GOPs to be encoded into one or more groups

based on a number of the parallel processor units;
assigning ranks to the frames in the GOPs;

comparing arguments of an encoding command for frames

of equal rank within a group of the one or more groups,
wherein the arguments include image information;

if the arguments are different from one another, transfer-

ring the arguments and the frames of equal rank to the
multi-core platform;
encoding the transferred frames in parallel by the parallel
processor units, creating encoded byte stream chunks;

re-arranging the encoded byte stream chunks in an output
buffer in display order sequence to create an encoded
byte stream; and

outputting the encoded byte stream.

US 9,148,669 B2

11

2. The method of claim 1, further comprising:
if the arguments of the encoding command for all frames of
equal rank are the same,
transferring at least one frame and a single argument to
the multi-core platform, and
providing the single argument to each parallel processor
unit in the multi-core platform.

3. The method of claim 1, wherein outputting the encoded
byte stream occurs after all frames in the group have been
encoded and the encoded byte stream chunks arranged in
display order sequence.

4. The method of claim 1, further comprising loading, by a
host application, at least a part of an encoder library into a
memory associated with the parallel processor units, such that
the encoding process is executed through a single API com-
mand provided by the host application.

5. The method of claim 2, wherein transferring at least one
frame and a single argument to the multi-core platform, and
providing the single argument to each parallel processor unit
in the multi-core platform is performed by executing a single
command to transfer the frames in a single batch to the par-
allel processor units.

6. A non-transitory computer-readable storage medium
storing instructions which, when executed in an encoding
system comprising a central processing unit (CPU), a host
memory, and a multi-core platform comprising a plurality of
parallel processor units, cause the encoding system to per-
form actions comprising:

receiving an input digital video signal comprising a plural-

ity of GOPs each comprising one or more frames;
determining, by the CPU, a number of GOPs to encode;
dividing the GOPs to be encoded into one or more groups

based on a number of the parallel processor units;
assigning ranks to the frames in the GOPs;

comparing arguments of an encoding command for frames

of equal rank within a group of the one or more groups,
wherein the arguments include frame variables;

if the arguments are different from one another, transfer-

ring the arguments and the frames of equal rank to the
multi-core platform;
encoding the transferred frames in parallel by the parallel
processor units, creating encoded byte stream chunks;

re-arranging the encoded byte stream chunks in an output
buffer in display order sequence to create an encoded
byte stream; and

outputting the encoded byte stream.

7. The computer-readable storage medium of claim 6, fur-
ther comprising:

if the arguments of the encoding command for all frames of

equal rank are the same,

transferring at least one frame and a single argument to
the multi-core platform, and

providing the single argument to each parallel processor
unit in the multi-core platform.

30

40

45

12

8. The computer-readable storage medium of claim 6,
wherein outputting the encoded byte stream occurs after all
frames in the group have been encoded and the encoded byte
stream chunks arranged in display order sequence.

9. The computer-readable storage medium of claim 6,
wherein the actions comprise loading, by a host application,
at least a part of an encoder library into a memory associated
with the parallel processor units, such that the encoding pro-
cess is executed through a single API command provided by
the host application.

10. The computer-readable storage medium of claim 6,
wherein transferring of the frames in the single batch to the
parallel processor units occurs via a single command from the
central processing unit to the parallel processor units.

11. A system for encoding a digital video signal, compris-
ing:

a host memory, configured to receive the digital video
signal, wherein the digital video signal comprises a plu-
rality of GOPs and the GOPs comprise one or more
frames;

a central processing unit, configured to:
divide the GOPs to be encoded into one or more groups,
compare arguments of an encoding command, for

frames of equal rank within a group of the one or more
groups, wherein the arguments include at least one of
frame width, frame height, frame row data and pixel
values,
if the compared arguments have the same value,
transfer, a single argument and at least one of the
frames of equal rank within the group, and
if the compared arguments have different values,
transfer, the arguments and the frames of equal rank
within the group; and

a multi-core platform comprising:

a plurality of parallel processor units configured to:
receive, from the central processing unit, frames of equal

rank from the group and at least one argument,
if only a single argument is received,
provide the single argument to each of the of parallel
processor units, encode the frames in parallel, cre-
ating encoded byte stream chunks, arrange the
encoded byte stream chunks in display order
sequence to create an encoded byte stream, and
output the encoded byte stream; and

a multi-core platform memory, configured to store frames
transferred from the central processing unit, and further
configured to store encoded byte stream chunks.

12. The system of claim 11, wherein the central processing
unit is further configured to transfer, with a single command,
frames of equal rank from each GOP in the group, in a single
batch, to the parallel processor units.

#* #* #* #* #*

